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We investigate rotation-induced Fermi resonances in HOCl by the adiabatic rotation (AR), centrifugal sudden
(CS), and exact methods, using a highly accurate potential energy surface [Skokov, S.; Peterson, K. A.;
Bowman, J. M.Chem. Phys. Lett. 1999, 312, 494]. We focus on the rotationally mediated interaction between
the (2,3,3) and (3,2,0) (VOH,Vbend,VOCl) states in theK ) 4 subband using exact, AR, and CS methods. A
simple two-state model is used to analyze the interaction, and interaction parameters are determined and
compared with those of the experiment. A similar analysis is done for the high-energy interacting pair of
states (4,0,0) and (3,2,1), using the AR method, and good agreement with the experiment is found. The
comparison between AR calculations and the experiment for the metastable (6,0,0) and (4,4,2) states in the
K ) 0 subband shows good agreement for the value ofJ where zero-order states cross but not for the coupling
constant. We also study rotationally mediated coupling in the pairs of states (1,0,2) and (0,3,2), (1,1,1) and
(1,4,1), and (3,0,0) and (2,1,3) using exact and approximate methods. These interactions have not been studied
experimentally.

I. Introduction

Hypochlorous acid (HOCl) plays an important role in ozone
layer depletion,1-3 and thus, the spectroscopy in both the ground
and electronically excited states has been extensively studied.4-10

The rovibrational spectroscopy shows readily assignable states;
however, strong interactions among several pairs of states have
been inferred experimentally. These interactions have been
shown to be strongly mediated as a function of the HOCl
rotational quantum numbersJ andKa.

Abel and co-workers6-8 have identified several perturbed
spectroscopic features using high-resolution intracavity laser
absorption spectroscopy. These authors observed that theKa )
4 rotational subband of the (3,2,0) state (3, 2, and 0 are
vibrational quantum number of OH vibration, bending, and OCl
vibration, respectively) is significantly perturbed by a dark state,
which they assigned as the (2,3,3) state. Similar perturbations
for the (4,0,0) state forKa ) 6 and 7 subbands have been
suggested to be due to the coupling with the (3,2,1) and possibly
several other states. Callegari et al.4 and Dutton et al.5 studied
the coupling between the metastable (6,0,0) and (4,2,2) states
in the Ka ) 0 subband in double-resonance experiments.

Ab initio calculations of these interactions require both a
highly accurate potential-energy surface (PES) and a very
accurate treatment of vibration/rotation mixing. A first attempt
at such calculations was reported recently by Chen et al.11 This
group used a first generation fit to high quality ab initio
calculations of the potential,12 and the rotation-vibration
coupling was treated using the centrifugal sudden (CS)13,14and
adiabatic rotation (AR)15,16approximations. These calculations

did find that the (3,2,0) state is indeed significantly mixed with
the (2,3,3) state nearJ ) 28 andK ) 4 andJ ) 14 andK )
3, whereas the (4,0,0) and (3,2,1) states couple atJ ) 43 in the
Ka ) 8 subband. These findings are good qualitative agreement
with the experiment. However, quantitative agreement was not
obtained because of slight inaccuracies in the PES and perhaps
because of slight errors in the methods used to treat rotation-
vibration coupling. Also this group did not consider the mixing
between the (4,4,2) and (6,0,0) states.

More recently, a new PES has been developed,17 based on a
global ab initio potential,18 and adjusted using a perturbative
inversion technique.19,20 With this adjustment, the PES repro-
duces experimental vibrational energies for 22 known bound
states forJ ) 0 to within less than 1 cm-1 and rotational
constants for nine low energy states. The fit to rotational energies
was made using the AR approximation. We used this potential
in the present new calculations of rotationally mediated Fermi
resonances.

The methods used and the details of the calculations are
described in the next section. Results and discussion are given
in section 3, and a summary and conclusions are given in section
4

II. Method and Calculational Details

The exact rovibrational Hamiltonian for triatomic molecules
is well-known.13,14 For the present purpose, we write it as

whereJ is the total angular momentum quantum number,R is
the distance of an atom from the center of mass of the remaining
two atoms, the diatom (in the present case Cl-OH), µ is the
corresponding reduced mass,K is the projection quantum
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number ofJ on the body-fixedZ axis (in the present case, the
vector R), and Ĵ-/+ and ĵ-/+ are the raising and lowering
operators associated withĴ and ĵ, respectively, in the rotating
frame. The potential and kinetic energy operators are contained
in ĤJ)0.

The method we used to obtain the eigenfunctions and
eigenvalues of this exact Hamiltonian is based on obtaining
eigenfunctions of the widely used approximate Hamiltonian, the
CS Hamiltonian, given by13,14

This Hamiltonian assumes thatK is a good quantum number,
and it is, in effect, a symmetric-top Hamiltonian, with the top
axis coincident with the body-fixedZ axis, which isR in the
present case. Eigenfunctions and eigenvalues of this approximate
Hamiltonian were obtained by doing a number of diagonaliza-
tions of smaller one- and two-dimensional reference Hamilto-
nians, while truncating high energy eigenfunctions at each step,
as described in detail elsewhere. The effective two-dimensional
Hamiltonian inr-R coordinates, forγ, the usual Jacobi angle,
fixed at the equilibrium value, was constructed and diagonalized
in a box 2.2< R < 10 bohrs and 1.0< r < 4.0 bohrs using
3200 direct product basis functions (80 numerical one-
dimensionalR functions and 40 numerical one-dimensionalr
functions) to obtain two-dimensional eigenfunctions. These in
turn were recoupled with appropriate associated Legendre
polynomials to form a three-dimensional basis. For the largest
calculation reported here, we recoupled the 150 lowest energy
two-dimensional eigenfunctions with 40 associated Legendre
polynomials (defined on 60 Gauss-Legendre quadrature points)
to obtain 5000 three-dimensional basis functions.

These eigenstates were used as a basis for diagonalization of
the full Hamiltonian, which is block-diagonal in the K-quantum
number. We were able to calculate well converged eigenvalues
of the full Hamiltonian up to excitation energies of 14 000 cm-1

above the zero-point energy.
As noted, the CS approximation can be regarded as a

symmetric-top approximation in which the top axis isR. An
alternate approximation is to determine the “instantaneous”
principal axis system for a given nuclear configuration and
calculate the rotational energy, either by making a symmetric-
top approximation in this system or by diagonalizing the
asymmetric-top rotor Hamiltonian. The resultant rotational
energy is then added toĤJ)0 to obtain the AR Hamiltonian15

In the symmetric-top approximation,Ka is a good quantum
number and

where Bh is the average of theB and C constants,J is the
rotational quantum number, andKa is the usual projection
quantum ofĴ on thea axis. The calculation of AR rotation
energies follows the procedure described above for the CS
calculation, but specific toJ ) 0, with the addition of the
rotational energy given by eq 4.

For J ) 0, the CS and AR Hamiltonians are identical and
also exact. The computational effort in doing AR (symmetric-
top version) and CS calculations forJ andK greater than zero

are essentially the same. Each calculation has to be repeated
for a given value ofJ andKa (K).

Rovibrational energies of HOCl were obtained using the CS
and AR approximations and also exactly for selected values of
Ka in order to test these approximations. The eigenvalues and
eigenfunctions were used to analyze mixings among vibrational
states induced by the rotational motion. A simple physical
picture of the origin of this effect is based on the following
“zero-order” expression for the rovibrational energy of a
vibrational statei

whereBh i and Ai are the state-specific rotation constants and
where for simplicity we drop the subscript “a” inKa hereafter.
This expression can be used to predict the value ofJ for say a
fixed K, where two states cross, in zero order. Of course, states
do not cross (except if they are of different rovibrational
symmetry), and if we assume that states interact in a pairwise
fashion, then in the vicinity of an avoided crossing the difference
in the energy of the exact eigenstates can be simply represented
(as is done spectroscopically) by

whereV is the coupling constant and∆εJ,K is the difference in
the zero-order energies, given by eq 5. Our approach, guided
by experiment, is to fit the rigorous calculated energy difference
∆E by eq 6 and to determineV and∆εJ,K from a least-squares
fit as described in detail elsewhere.11 Note, however, that in
the fit ∆εJ,K is written as∆εK + ∆Bh iJ(J + 1), where∆εJ,K(J +
1) is the difference of the exact eigenvlaues for the given value
of K andJ ) K, i.e., the minimum value ofJ.

III. Results and Discussion

Tests of the CS and AR Approximations.The AR, CS,
and exact methods were used to calculate the rovibrational states
of the HOCl. The asymmetry parameter of HOCl is very close
to one as determined by our calculations and also from the
experiment; this indicates that HOCl is a near symmetric-top.
(In our calculation, the energy difference between the symmetric
and asymmetric method in the energy range of our interest is
typically within 0.15 cm-1.) Therefore, we used only a sym-
metric-top version of the AR method for the calculations
reported below. The comparisons between CS and exact energies
and between AR and exact energies forK ) 1 andJ ) 20 are
given in Figure 1. Both the AR and CS approximations slightly

ĤCS
J,K ) ĤJ)0 +

J(J + 1) - 2K2

2µR2
(2)

ĤAR
J,Ka,Kc ) ĤJ)0 + EKa,Kc

J (R,r,γ) (3)

EKa

J (R,r,γ) ) Bh(R,r,γ)J(J + 1) + [A(R,r,γ) - Bh(R,r,γ)]Ka
2

(4)

Figure 1. Comparison of CS and AR energies with exact ones for
J ) 20 andKa ) 1.

εi
J,K ) εi

J)0 + Bh iJ(J + 1) + (Ai - Bh i)K
2 (5)

∆E ) x4V2 + ∆ε
J,K (6)
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overestimate rovibrational energies, but the AR energies are
more accurate than the CS ones. Note that the CS approximation
does depend on the choice of Jacobi coordinates and the body-
fixed Z axis. We have made the optimum choice, whereR (the
body-fixedZ axis) is the position vector of Cl to the center of
mass of OH.

Next we present results of rotationally mediated coupling for
pairs of eigenstates. For some of these, the results are based on
both exact and approximate calculations, and this will constitute
another test of the CS and AR approximations.

The first pair of states we consider are (2,3,3) and (3,2,0).
The energies of these states has been observed experimentally
for theK ) 4 subband.6 We were able to do exact calculations
for these states, and the results are shown in Figure 2. Note,
we refer the rovibrational energies to a reference rotational
energy indicated in the figure to better display the avoided
crossing of these two states in the vicinity ofJ ) 16. TheJ
dependence of the energies of these two states was fit to eq 6
(the maximum error of the fitting is 0.04 cm-1), and the zero-
order energies, determined from the fit and based on eq 5, are
also shown. One can clearly see an avoided crossing atJ ) 16.
The present calculations show much better agreement with the
experimentally observed avoided crossing atJ ) 116 as
compared to the previous calculation11 in which the predicted
crossing was atJ ) 28. The values of the Fermi coupling
constantV and ∆B are also in better agreement with the
experiment (Table 1). Note also from Table 1 that the numeri-
cally determined constantsV and ∆B are in good agreement
among all of the calculational methods. Thus, even if the
calculated absolute energies are slightly different, the energy
differences, which are what are used in determiningV and∆B,
may be quite close.

To further examine the coupling of the (2,3,3) and (3,2,0)
states, we calculated the dependence of the expectation values
of r with J, and the results are shown in Figure 3. At both high
and lowJ, 〈r〉 values for the (2,3,3) and (3,2,0) states are close
to the corresponding values for unperturbed states; however,
their values converge to each other as the energy levels become
closer, and they are almost same atJ ) 15 and 16. This is an
indication that these two states are strongly mixed at these values
of J. Also, there are two abrupt changes of〈r〉 at J ) 8 and 20
for the (3,2,0) state; these are caused by the coupling with other
states whose energies are only 0.5 cm-1 different from the
(3,2,0) state at twoJ values. The strong mixing of (3,2,0) and
(2,3,3) states atJ ) 16 andK ) 4 can also be confirmed by the

inspection of the corresponding eigenfunctions. This was done
previously,11 although as noted atJ ) 28, and so, we do not
show the figure here.

The perturbation of the (4,0,0) state was also studied
experimentally for theK ) 8 subband by Hamman et al.6 They
argued that this state was perturbed by the (3,2,1) state, and
this was qualitatively confirmed by the earlier calculations of
Chen et al.11 The energy differences between the (4,0,0) and
(3,2,1) eigenstates and corresponding zero-order states forK )
8 subband are shown in Figure 4. In this figure, we have plotted
the difference in the exact energies as well as the zero-order
energies. Not that in this case the zero-order energies approach
each other but do not exactly go to zero. Equation 6 was used
again to determineV and∆B (and both given in Table 1). We
found a relatively large value ofV, 3.95 cm-1, which is in good
agreement with the experimental6 value of 2.99 cm-1.

Recently, Calleagari et al.4 and Dutton et al.5 observed that
the bright state (6,0,0) is strongly perturbed in theK ) 0 subband
for J in the range of 20-30. The difference in rotational
constants of the (6,0,0) and (4,4,2) zero-order states,∆B, is 0.015
cm-1, and the crossing point occurs atJ ) 22. The experimental
and calculated AR energy differences between these two states
are plotted at Figure 5. The present calculation gives∆B )
0.016 cm-1 and the crossing point atJ ) 28, in good agreement
with experimental value of approximately 22. However, our
computed Fermi coupling constant is 0.44 cm-1 which is 10
times smaller than the nominal experimental value of 4.8 cm-1.

Figure 2. Zero-order (dashed line) and exact coupled (solid line) energy
difference for the states (2,3,3) and (3,2,0) vsJ for Ka ) 4.

TABLE 1: ∆B (cm-1) and Coupling Constant V (cm-1) for
Fermi Pairs of Interacting States

calculated experimental

Fermi pairs ∆B V ∆B V

(2,3,3)/(3,2,0) 0.016a 0.678a 0.015d 0.435d

0.015b 0.673b

0.017c 0.672c

(4,0,0)/(3,2,1) 0.0074a 3.95 ∼10-4 d 2.99d

(6,0,0)/(4,2,2) 0.016a 0.44a 0.015e,f 4.8e,f*
(1,0,2)/(0,3,2) 0.0054a 2.02a

0.0040b 2.07b

0.0053c 2.06c

(1,1,1)/(1,4,1) 0.0045a 0.624a

0.0038b 0.75b

0.0045c 0.71c

(3,0,0)/(2,1,3) 0.015a 0.221a

0.014b 0.235b

0.016c 0.226c

a AR. b Exact.c CS. d Reference 6.e Reference 4.f Reference 5.

Figure 3. Expectation value ofr for the states (3,2,0) (filled circles)
and (2,3,3) (filled squares) vsJ for Ka ) 4.

Ar, CS, and Exact Calculations of Fermi Resonances J. Phys. Chem. A, Vol. 105, No. 11, 20012425



However, both groups noted that this value is unreasonably
large, and it was concluded that additional dark states are
involved in interactions with (6,0,0). Thus, the comparison with
the experiment is a bit uncertain in this case.

There are, of course, many rotationally induced Fermi
interactions. We have examined several others in theK ) 0
subband, which have not been reported experimentally. The
results of these studies are summarized in Table 1, where in all
cases exact calculations were done. As seen, there is generally
good agreement between the results of the approximate methods
and those of the exact ones.

IV. Summary and Conclusions

Using an improved PES, we investigated rotation-induced
Fermi resonances in HOCl by the AR, CS, and exact methods.
Comparison of AR and CS rovibrational energies forK ) 0
with the exact results indicate that both methods are quite
accurate, with, however, the AR being more accurate than the
CS method. The accuracy of these approximate methods is not
surprising given that HOCl is a nearly symmetric prolate top.

We studied the rotationally mediated interaction between the
(2,3,3) and (3,2,0) states in theK ) 4 subband using exact,
AR, and CS methods. A simple two-state interaction model was
used to analyze the interaction. The energies of the zero-order
states were predicted to cross point atJ ) 16, in good agreement
with the experimental result ofJ ) 11. Interaction parameters
were also determined and compared favorably with the experi-
ment. The comparison between the exact and approximate
methods indicated that both approximation methods are of high
accuracy. A similar analysis was done for the high-energy
interacting pair of states (4,0,0) and (3,2,1), using the AR
method, and again good agreement with the experiment was
found. The comparison between AR calculations and the
experiment for the metastable (6,0,0) and (4,4,2) states in the
K ) 0 subband showed good agreement for the value ofJ where
zero-order states cross but not for the coupling constant. This
may be due to the complication of additional interacting states,
inferred experimentally, or small errors in the potential or
perhaps small errors in the AR method for these high energy
states. We also studied rotationally mediated coupling in the
pairs of states (1,0,2) and (0,3,2), (1,1,1) and (1,4,1), and (3,0,0)
and (2,1,3), using exact and approximate methods. These
interactions have not been studied experimentally.
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